Battery Health-conscious Plug-in Hybrid Electric Vehicle Grid Demand Prediction
نویسندگان
چکیده
1 Corresponding author. ABSTRACT This paper examines the problem of predicting the aggregate grid load imposed by battery health-conscious plug-in hybrid electric vehicle (PHEV) charging. The paper begins by generating a set of representative daily PHEV trips using the National Household Travel Survey (NHTS) and a set of federal and realworld drive cycles. Each trip is then used in a multiobjective genetic optimizer, along with a PHEV model and a battery degradation model, to simultaneously minimize PHEV energy cost and battery degradation. The optimization variables include the parameters of the PHEV charge pattern, defined as the timing and rate with which the PHEV receives electricity from the grid. For several weightings of the optimization objectives, total PHEV power demand is predicted by accumulating the charge patterns for individual PHEVs. Two charging scenarios, i.e., charging at home only versus charging at home and work, are examined. Results indicate that the main PHEV peak load occurs early in the morning (between 5.00-6.00a.m.), with approximately 45%60% of vehicles simultaneously charging from the grid. Moreover, charging at work creates additional peaks in this load pattern.
منابع مشابه
Optimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملHierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle
This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric p...
متن کاملModified Harmony Search Algorithm Based Unit Commitment with Plug-in Hybrid Electric Vehicles
Plug-in Hybrid Electric Vehicles (PHEV) technology shows great interest in the recent scientificliteratures. Vehicle-to-grid (V2G) is a interconnection of energy storage of PHEVs and grid. Byimplementation of V2G dependencies of the power system on small expensive conventional units canbe reduced, resulting in reduced operational cost. This paper represents an intelligent unitcommitment (UC) wi...
متن کاملDetailed Modeling and Novel Scheduling of Plug-in Electric Vehicle Energy Storage Systems for Energy Management of Multi-microgrids Considering the Probability of Fault Occurrence
As an effective means of displacing fossil fuel consumption and reducing greenhouse gas emissions, plug-in electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs) have attracted more and more attentions. From the power grid perspective, PHEVs and PEVs equipped with batteries can also be used as energy storage facilities, due to the fact that, these vehicles are parked most of the ...
متن کاملIntelligent Power Control of Green Building-Integrated of Fuel Cell and Plug-in Electric Vehicle in Smart Distribution Systems
The renewable energy sources and plug-in electric vehicles (PEVs) are becoming very popular because of the combination of high fuel costs and concerns about emission issues. This paper presents modelling and control of a Building Integrated Fuel Cell and Plug-in Electric Vehicles (BIFC-PEV) in smart distribution systems. In BIFC-PEV system, conventional building elements could be replaced by sp...
متن کامل